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Male	 infertility	 and	 cancers	 were	 recently	 linked,	 suggesting	
shared	 molecular	 bases.	 Because	 alteration	 of	 connexin	
functions	were	associated	with	male	 infertility	 and	detected	 in	
many	cancers,	it	is	likely	that	connexins	are	one	of	the	molecular	
machinery	 involved	 in	 the	 initiation	 of	 both	 pathologies.	 In	
addition,	chemicals	present	within	our	environment	can	be	at	the	
origin	of	these	two	pathologies	through	their	action	on	connexin	
expression	and/or	trafficking.	However,	taking	advantage	of	this	
knowledge	to	develop	strategies	targeting	connexins	to	cure	male	
infertility	and	cancer	still	remains	challenging.

Through	its	role	in	procreation	and	dissemination	of	the	genome,	
reproductive	 function	 is	 essential	 for	 the	 survival	 of	 species.	
Since	decades,	accumulating	evidences	underline	the	worldwide	
decline	 of	 man	 semen	 quality	 [1-3].	 This	 incidence	 will	 cause	
in	 the	 near	 future	 a	major	 public	 health	 issue.	 Strikingly,	male	
infertility	was	recently	 found	as	an	 increased	risk	factor	for	the	
development	of	various	cancers,	including	testis	cancer	[4].	It	is	
likely	that	the	relationship	between	male	reproductive	function	
failure	and	cancer	development	has	common	molecular	bases.

Connexins,	 the	 proteins	 that	 composed	 the	 gap	 junctions,	 are	
now	seen	as	major	molecular	regulators	of	male	fertility.	Indeed,	
several	studies	demonstrated	that	these	proteins	are	controlling	
testis	 function	 at	multiple	 steps	 [5].	 First	 of	 all,	 connexins	 play	
a	central	 role	 in	 testis	morphogenesis	by	controlling	primordial	
germ	 cells	 migration	 [6,7],	 Sertoli	 cells	 proliferation	 [8,9],	 and	
cellular	 polarization	 within	 the	 seminiferous	 tubules	 [10-12].	
Second,	 gap	 junction	 intercellular	 communications	 are	 crucial	
for	 the	 production	 of	 testosterone	 by	 Leydig	 cells	 in	 response	
to	luteinizing	hormone	[13].	Third,	connexins	are	key	players	for	
spermatogenesis.	 Indeed,	 the	 gap	 junctions	 located	 between	
Sertoli	 cells	 and	 germ	 cells	 [14]	 were	 found	 to	 be	 involved	 in	
meiotic	progression	of	spermatocytes	[15,16].	Forth,	few	studies	
underlined	a	potential	role	of	gap	 junctions	 in	erectile	function	
(for	 review	 [17]).	 Due	 to	 the	 implication	 of	 gap	 junction	 in	 all	
these	function,	it	is	clear	that	a	defect	of	connexin	function	will	
have	a	dramatic	impact	on	male	fertility.

As	a	potential	molecular	link	between	male	infertility	and	cancer,	
connexins	were	 found	dysregulated	 in	many	 cancers	 including:	
liver,	colon,	breast,	lung,	skin,	thyroid,	ovary	and	testis	cancer	[18].	
The	failure	of	connexin	function	in	cancer	cells	was	demonstrated	
to	be	due	to	gene	mutation	[19],	altered	mRNA	and/or	protein	

expression	[20],	or	protein	mis-localization	[21,22].	Importantly,	
aberrant	connexin	localization	has	been	reported	in	the	majority	
of	tumor	cells	and	in	chemically-induced	cancer	cells.	Depending	
on	the	cancer	cells,	connexins	were	found	either	stacked	in	the	
Golgi	 apparatus	 [23],	 or	 destabilized	 at	 the	 plasma	membrane	
leading	 to	 acute	 endocytosis	 [24].	 Strikingly,	 forced-expression	
of	connexin	within	cancer	cells	was	shown	to	reduce	cancerous	
features	 such	 as	 uncontrolled	 cell	 proliferation	 and	 migration	
[25,26]	and	promotes	the	effect	of	chemotherapy	[27],	suggesting	
that	 the	 failure	 of	 connexin	 functions	 is	 a	 primary	 defect	 that	
contributes	to	carcinogenesis.

Although	there	is	now	clear	evidence	that	alteration	of	connexin	
functions	 within	 the	 organism	 could	 be	 responsible	 for	 male	
infertility	and	for	cancer	development,	the	cause	of	the	connexin	
defect	 remains	 to	 be	 determined.	 Increasing	 evidence	 of	 the	
impact	of	the	environment	on	both	pathologies	rises.	Moreover,	
chemicals	 such	 as	 pollutants	 and	 endocrine	 disruptors	 were	
often	associated	with	male	 infertility	 and	 cancer	development.	
Interestingly,	 a	 large	 number	 of	 these	 chemicals	 were	 found	
to	 alter	 gap	 junction	 functionality	 [18].	 As	 examples,	 we	
demonstrated	in	our	laboratory	that	lindane	and	DDT,	two	well-
known	 non-genomic	 carcinogens	 [28],	 strongly	 increased	 gap	
junction	internalization	leading	to	an	abolishment	of	intercellular	
communication	 in	 Sertoli	 cells	 [29-31].	 It	 is	 therefore	 likely	
that	 carcinogen	 exposure	 leads	 to	 defective	 connexin	 function	
in	various	organs	and	cell	 types	and	may	 impact	on	both	male	
fertility	and	cancer	development.
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Altogether,	these	results	underline	that	connexins	could	be	seen	
as	major	targets	for	infertility	and	cancer	therapy.	However,	since	
the	defects	are	often	associated	with	a	lack	of	functionality,	the	
design	of	therapeutic	strategies	has	to	be	focused	on	either	re-
expression	of	the	connexins	or	on	forcing	the	recycling	of	connexins	
after	 their	 internalization.	Unfortunately,	 these	 approaches	 are	
very	challenging	for	clinical	perspectives.	Therefore,	in	the	near	
future,	 developing	 high	 content	 chemical	 screening	 to	 identify	

molecules	able	to	stimulate	connexin	expression	could	permit	to	
identify	potential	interesting	drugs	to	solve	this	issue.	In	addition,	
similar	 approach	 could	 be	 used	 to	 identify	 chemicals	 able	 to	
recycle	 internalized	 connexins	 back	 to	 the	 plasma	 membrane	
by	 tuning	 the endocytic	 recycling	 trafficking.	 Recent	 studies	
uncovered	that	miRNAs	can	control	the	expression	of	connexins	
[32,33],	consequently,	miRNAs	and/or	antago-miR	could	also	be	
seen	as	a	promising	strategy	to	restore	gap	junction	function.	
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