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Commentary
Directed cell lineage differentiation in vitro combined with 
genetic modification approaches provides an enormous range 
of possibilities to treat muscular degenerative diseases such as 
muscular dystrophies (MDs). Currently, no effective therapy is 
available to treat any form of MDs, which are characterized by 
progressive muscle wasting and weakness [1]. The limited efficacy 
of conventional drugs slow down the progress of the disease to 
certain level, yet the long-term course cannot be changed. Hence, 
cell-based therapies represent a promising strategy to treat MDs. 

Enormous efforts have been invested in finding the appropriate 
method to obtain muscle progenitors suitable for cell therapy by 
in vitro differentiation of pluripotent stem cells. Human induced 
pluripotent stem cells (iPSCs) are one of the favorite sources to 
generate muscle progenitor cells [2-8]. These cells can propagate 
indefinitely and have potential to differentiate to all cell types 
originated from the three germ layers [9]. Furthermore, obtaining 
iPSCs do not involve manipulation of human embryos, allowing 
the production of autologous pluripotent cells while avoiding the 
ethical issues raised by the use of human embryonic stem cells 
(ESCs). However, the efficiency of the directed differentiation 
to functional myogenic population from iPSCs is fairly low. 
Therefore, increasing the efficiency of directed differentiation 
to myogenic lineage cells from iPSCs is a key step towards 
the development of cell therapies. Early protocols to obtain 
myogenic lineage cells were based on the embryoid body (EB) 
formation method. The progenitors obtained by this method 
displayed long-term engraftment ability in cardiotoxin pre-
injured muscle tissue of immunocompromised mice. Moreover, 
they showed evidence of replenishing the satellite cell pool [10-
12]. However, the differentiation efficiency was relatively low and 
the population obtained was very heterogeneous. Consequently, 
muscle lineage progenitors were hard to be separated from other 
lineages [12]. Difficulties in the isolation step and utilization of 
medium containing fetal bovine or calf serum made these cells 
unsuitable for cell therapy. Later studies succeeded in obtaining 
large amounts of myogenic lineage cells with high efficiency 
by overexpression of myogenic transcription factors Pax7 [5], 
Pax3 [13] or MyoD1 [14]. The engraftment efficiency of muscle 
lineage cells obtained by this method could reach 53% [15], and 
transplantation of these cells improved muscle functions [5]. 
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However, these methods required the utilization of viral vectors 
that are also incompatible with human cell therapies. Several new 
protocols have been developed lately to overcome the limitations 
of the above methods. These new protocols are mainly based on 
addition of soluble factors to precisely manipulate BMP, WNT 
and FGF signaling pathways to increase myogenic differentiation 
efficiency in monolayer cultures [16-18]. In contrast to the EB 
formation method, these stepwise monolayer cell differentiation 
systems, are developed using serum free medium. In addition, 
cells with myogenic differentiation potentials such as mesoderm 
cells can be specifically enriched to improve the differentiation 
efficiency, and progenitors differentiated from these systems are 
easier to isolate to the purity required for cell therapy. Shelton and 
coworkers described a step by step protocol to differentiate ES 
cells first to mesoderm, then to myogenic lineage cells. To achieve 
that, GSK3 inhibitor was first added to activate WNT signaling 
for mesoderm induction. Next, FGF2 was added to expand the 
differentiated muscle progenitors and N2 supplemented medium 
was used to induce further muscle differentiation. Up to 90% 
of myogenic lineage cells were obtained with this method [16]. 
Recently, Chal et al described a protocol to differentiate iPSCs to 
myogenic progenitors and mature muscle. In this case, after the 
presomitic mesoderm induction by WNT activation, BMP inhibitor 
was added and then several growth factors, including FGF2, IGF 
and HGF, were used to induce the final maturation of muscle 



2015
Vol.1 No.1:9

2 This article is available in: http://cellular-molecular-medicine.imedpub.com/

Cellular & Molecular Medicine: Open access 
ISSN 2573-5365

fibers [17]. These strategies enable us to specifically generate 
myogenic lineage progenitors, recapitulating the entire myogenic 
developmental program in xeno-free conditions, without ectopic 
expression of transcription factors. Nevertheless, additional in 
vivo studies are needed to analyze the engraftment efficiency, 
functionality and safety of these myogenic progenitor cells. 
Combined with genetic modification techniques such as CRISPR/
CAS9 and TALEN [19], the myogenic lineage cells obtained from 
the in vitro differentiation system have great potential to evolve in 

cell based therapies. Yet this is just the beginning of the journey. 
In order to translate the research to clinical treatment of muscle 
degenerative diseases, several questions remain to be answered. 
What is the best way to deliver the myogenic cells to patients? Are 
they safe? Would they trigger unexpected immune responses? 
Further investigations will provide us more knowledge to answer 
the above questions and pave the road towards the development 
of cell therapies for MDs.
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