

Molecular Profiling of Immune Cells in Autoimmune Disorders

Julieta Blanco*

Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Region Metropolitan, Chile

*Corresponding author: Julieta Blanco, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Region Metropolitan, Chile; E-mail: blancoj01@med.uchile.cl

Received date: April 01, 2025, Manuscript No. ipcmm-25-20948; **Editor assigned date:** April 03, 2025, Pre QC No ipcmm-25-20948(PQ); **Reviewed date:** April 17, 2025, QC No ipcmm-25-20948; **Revised date:** April 23, 2025, Manuscript No.ipcmm-25-20948(R); **Published date:** April 30, 2025, DOI: 10.21767/2573-5365.11.2.4

Citation: Blanco J (2025) Molecular Profiling of Immune Cells in Autoimmune Disorders. J Cell Mol Med Vol.11 No.2:4

Introduction

Molecular profiling of immune cells has emerged as a transformative approach for understanding the complexity of autoimmune disorders, conditions in which the immune system mistakenly attacks the body's own tissues. Disorders such as Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus (SLE), Multiple Sclerosis (MS), and Inflammatory Bowel Disease (IBD) involve intricate dysregulation of immune cell populations and signaling pathways. Traditional immunological techniques offered broad insights but lacked the resolution needed to identify subtle yet critical molecular changes driving pathogenesis. Advances in high-throughput sequencing, single-cell technologies, and multi-omics analytics now allow researchers to characterize immune cells with unprecedented precision. By examining transcriptional signatures, epigenetic patterns, surface markers, and protein expression dynamics, molecular profiling provides a comprehensive view of immune cell function, heterogeneity, and pathological transformation in autoimmune diseases [1].

Description

One of the most significant contributions of molecular profiling is the identification of distinct immune cell subsets and their dysfunction in autoimmune disorders. Single-cell RNA sequencing (scRNA-seq) has revealed previously unrecognized cell populations, such as pathogenic Th17 cells in RA and T peripheral helper (Tph) cells in lupus, both of which play central roles in sustaining chronic inflammation.

In MS, molecular signatures of autoreactive T cells have highlighted abnormalities in cytokine production, migratory capacity, and metabolic programming. Similarly, profiling of B cells in SLE has exposed expanded populations of antibody-secreting cells producing harmful autoantibodies. By mapping these molecular characteristics, researchers gain deeper insight into disease onset, progression, and tissue-specific immune cell behavior [2].

Epigenetic regulation also plays a pivotal role in shaping immune cell behavior during autoimmunity. Techniques such as ATAC-seq and methylation sequencing reveal how chromatin accessibility and DNA methylation patterns influence gene expression and immune activation thresholds. In diseases like RA and IBD, specific epigenetic signatures correlate with disease severity and treatment response, offering potential biomarkers for patient stratification. Moreover, the altered expression of microRNAs and other noncoding RNAs further modulates immune cell differentiation and inflammatory signaling, adding another layer of complexity to autoimmune pathology [3].

Proteomic and metabolomic profiling complement transcriptomic and epigenomic analyses by capturing functional changes that occur after gene expression. Mass spectrometry-based proteomics has identified dysregulated signaling pathways such as JAK/STAT, NF-κB, and interferon signalling that drive chronic inflammation across various autoimmune conditions. Meanwhile, metabolomic profiling uncovers shifts in metabolic states, such as increased glycolysis in activated T cells or altered lipid metabolism in macrophages, which directly influence immune cell function [4,5].

Conclusion

Molecular profiling of immune cells offers an integrated understanding of the cellular and molecular mechanisms underlying autoimmune disorders. By combining transcriptomic, epigenomic, proteomic, and metabolomic insights, researchers can characterize pathogenic immune cell subsets, uncover biomarkers for early diagnosis, and identify novel therapeutic targets. These high-resolution approaches not only deepen scientific knowledge but also pave the way for precision medicine strategies tailored to individual patients. As technologies continue to advance, molecular profiling will remain essential for unraveling autoimmune disease complexity and improving long-term treatment outcomes.

Acknowledgement

None

Conflict of Interest

None

References

1. Skurkovich S, Skurkovich B, Bellanti JA (1987) A unifying model of the immunoregulatory role of the interferon system: Can interferon produce disease in humans? *Clin Immunol Immunopathol* 43: 362–373
2. Steinberg AD, Baron S, Talal N (1969) The pathogenesis of autoimmunity in New Zealand mice, I: Induction of antinucleic acid antibodies by polyinosinic-polycytidylic acid. *Proc Natl Acad Sci* 63: 1102–1107
3. Ronnblom LE, Alm GV, Oberg KE (1990) Possible induction of systemic lupus erythematosus by interferon- α treatment in a patient with a malignant carcinoid tumour. *J Intern Med* 227: 207–210
4. Hadjivassiliou M, Wild G, Shanmugarajah P, Grünwald RA, Akil M (2021) Indirect immunofluorescent assay as an aid in the diagnosis of suspected immune mediated ataxias. *Cerebellum Ataxias* 8: 6
5. Gaetani L, Blennow K, Calabresi P, Di Filippo M, Parnetti L, et al. (2019) Neurofilament light chain as a biomarker in neurological disorders. *J Neurol Neurosurg Psychiatry* 90: 870–881