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Introduction
The	development	of	hypertrophic	scars	is	a	common	occurrence	
and	the	most	common	complication	after	burn	injury	[1].	Progress	
has	been	made	in	developing	gene	expression	patterns	that	share	
some	molecular	characteristics	with	human	scars	[2,3].	However,	
these	 studies	 do	 not	 focus	 on	 non-coding	 RNAs.	 Additionally,	
the	cost	and	expertise	required	to	manage	these	large	scales	of	
gene	expression	 studies	may	preclude	many	 investigators	 from	
incorporating	these	models	into	their	experiments	[4].

Following	a	current	consensus	of	burn	researchers	and	clinicians,	
several	 research	 priorities	 were	 proposed.	 Particularly,	 it	 is	
pointed	out	that	gene	expression	plays	an	important	role	in	early	
and	serial	biopsies	of	human	skin	[5,6].	Further,	recommendations	
were	 also	 made	 that	 future	 studies	 in	 burn	 research	 were	
needed	to	 include	high	throughput	gene	expression	analysis	by	
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Background:	Several	mechanisms	are	thought	to	be	essential	for	the	development	
of	burn	scars,	but	there	is	still	a	challenge	to	study	the	lncRNA	expression	response	
to	burn	injury	in	the	skin.	The	purpose	of	this	study	was	to	examine	the	changes	in	
lncRNA	expression	in	human	skin	after	burn	injury.

Methods:	This	was	done	by	comparing	pre-injury	tissue	from	otherwise	healthy	
adults,	by	virtue	of	a	microarray	gene	expression	profile.	We	first	ranked	gene	sets	
(or	gene	signatures)	that	 identify	each	class.	A	multiple-class	classifier	was	built	
based	on	the	gene	sets.	Then,	gene	networks	associated	with	scars	and	burn	injury	
was	built	in	order	to	identify	the	hub	genes	to	each	class.	Finally,	the	hub	genes	
in	the	network	were	 identified	as	 important	genes	and	tested	 in	an	 in-vitro	cell	
model.

Results:	 The	 set	 of	 genes	 considered	 significant	 for	 each	 of	 the	 classes	 is	
determined	by	a	common	threshold	for	the	posterior	probability.	Burn	wound	has	
been	assigned	6	genes	as	signatures,	pre-injury	healthy	skin	5	genes,	while	scar	
only	2	genes.	By	gene	networks,	 lncRNA	RN7SK	and	CACNA1G-AS1	were	shown	
with	the	higher	discriminant	power.	In	fibroblasts,	overexpression	of	RN7SK	and	
CACNA1G-AS1	increased	migration	and	wound	healing-rate	by	approximately	20%	
and	10%	compared	with	the	control	group.	
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cutting-edge	 bioinformatics	 pipelines	 [7,8].	 Long	 non-coding	
RNA,	 which	 has	 similar	 sequence	 characteristics	 with	 protein-
coding	genes,	such	as	being	usually	the	50	cap	and	30	poly	 (A)	
tail,	 spliced	 and	most	 transcribed	 by	 RNA	 polymerase	 II	 [9],	 is	
defined	as	a	kind	of	RNA	molecules	with	length	longer	than	200	
nucleotides	 [10].	 Although	 lacking	 the	 protein-coding	 function,	
lncRNA,	 acknowledgedly,	 plays	 a	 significant	 role	 in	 regulation	
of	 transcription	 and	 translation	 of	 the	 coding	 RNA	 in	 the	 scar	
formation	 [11,12],	 through	 regulating	 a	 series	 of	 biological	
processes	 across	 genomic	 imprinting	 [13],	 maintenance	 of	
genome	 integrity,	 cell	 cycle	 control	 [14,15],	 development	 and	
differentiation	[16].

The	purpose	of	this	study	was	to	identify	lncRNAs	in	pre-injury,	
early	 and	 serial	 samples	 of	 untreated	 human	 burn	wounds.	 In	
order	to	identify	lncRNA	gene	signatures	of	burn	injury	and	scars	
[17],	we	set	up	an	analysis	based	on	the	geNetClassier	algorithm	
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[18],	which	 is	 designed	 to	 build	 transparent	 classifiers	 and	 the	
associated	 gene	 networks	 based	 on	 genome-wide	 expression	
data.	 This	 algorithm	 shows	 a	 robust	 performance	 applied	 to	
patient-based	 gene	 expression	 datasets	 that	 study	 disease	
subtypes	or	disease	classes.

Here	 in	 our	 research,	 we	 first	 ranked	 gene	 sets	 (or	 gene	
signatures),	 which	 integrates	 several	 existing	machine	 learning	
and	 statistical	 methods,	 identifies	 burn	 injury	 and	 pre-injury	
sample.	The	feature	ranking	was	achieved	based	on	a	Parametric	
Empirical	 Bayes	 method	 (PEB).	 Double-nested	 internal	 cross-
validation	(CV)	[19,20]	was	used	for	the	feature	selection	process	
and	 to	 estimate	 the	 generalization	 error	 of	 the	 classifier.	 The	
machine	 learning	method	 implemented	 in	 the	 classifier	 was	 a	
multi-class	Support	Vector	Machine	(SVM)	[21].	Then,	the	gene	
networks	 associated	 with	 each	 class	 were	 identified	 [22,23].	
Finally,	the	hub	genes	in	the	network	were	identified	as	key	gene	
signatures	and	tested	in	an	in-vitro	cell	model.

Methods
Data collection
Microarray	 data	with	 the	 accession	 number	 E-MTAB-1323	was	
chosen	 and	 obtained	 for	 this	 study.	 The	 microarray	 dataset	
E-MTAB-1323	 deposited	 by	 Vincent	 Gabriel	 was	 based	 on	 the	
platform	of	the	Illumina	HumanWG-6	v3.0	Expression	BeadChip.	
In	our	study,	we	show	its	performance	for	a	dataset	that	includes	
30	 microarray	 samples	 from	 5	 healthy	 skin	 subjects,	 15	 burn	
wound	 subjects,	 10	 scar	 controls.	 This	 dataset	 contains	 an	
expression	profile	with	mRNA	extracted	from	burn	scar	biopsies	
of	 patients	 of	 the	 3	major	 types	 (burn	wound,	 pre-injury,	 and	
scar).	

Data pre-processing
Gene	 expression	 profiles	 were	 preprocessed	 using	 a	 chip	
description	 file.	 This	 chip	 description	 file,	 with	 gene-based	
annotation	files	 for	 the	 Illumina	expression	microarrays,	 allows	
mapping	 the	 expression	 directly	 to	 genes	 (Ensembl	 IDs	 ENSG)	
instead	 of	 probe	 sets.	 To	 translate	 these	 Ensembl	 gene	 IDs	
into	 Gene	 Symbols	 for	 easier	 reading,	 the	 optional	 argument	
geneLabels	 from	geNetClassier	 can	be	used.	This	option	allows	
extending	the	annotation	and	labeling	of	the	genes	by	providing	
a	table	that	contains	the	gene	symbol	and	other	characteristics	
of	the	genes	in	the	expression	set.	This	option	can	be	used	with	
any	annotation	as	long	as	it	is	provided	in	the	correct	format.	The	
raw	downloaded	data	in	the	original	chip	files	were	preprocessed	
using	 the	 Robust	 Multi-array	 Average	 (RMA)	 algorithm	 in	
Bioconductor	(version	3.6)	in	R	language	(version	3.4.3).	

The	 process	 could	 realize	 the	 background	 correction,	 quantile	
normalization	 and	 probe	 summarization	 of	 the	 raw	microarray	
data.	 The	gene	expression	 value	was	 log2	 transformed.	 Finally,	
we	got	48,803	gene	expression	profile	data.	A	total	of	503lncRNAs	
were	selected	for	further	analysis.

Classification 
Filtering data and calculating the ranking of the genes: A	first	
version	of	the	ranking	is	built	by	ordering	the	genes	decreasingly	
by	their	posterior	probability	for	each	class.	To	resolve	the	ties,	

our	model	uses	the	expression	difference	between	the	mean	for	
each	gene	 in	the	given	class	and	the	mean	 in	the	closest	class.	
The	first	step	of	classification	algorithm	is	to	determine	a	ranking	
of	genes	for	each	class	based	on	the	analysis	of	the	expression	
signal.	To	create	this	ranking,	we	use	a	Parametric	Empirical	Bayes	
method	 [19,20,24].	 This	 method	 implements	 an	 Expectation-
Maximization	 (EM)	 algorithm	 for	 gene	 expression	 mixture	
models,	which	compares	the	patterns	of	differential	expression	
across	multiple	conditions	and	provides	a	posterior	probability.	
The	posterior	 probability	 is	 calculated	 for	 each	 gene-class	 pair,	
and	represents	how	much	each	gene	differentiates	a	class	from	
the	other	classes;	being	1	the	best	value,	and	0	the	worst.	In	this	
way,	the	posterior	probability	allows	finding	the	genes	that	show	
significant	differential	 expression	when	 comparing	 the	 samples	
of	 one	 class	 versus	 all	 the	 other	 samples	 (One-versus-Rest	
comparison).	In	addition,	the	genes	with	a	posterior	probability	
greater	or	equal	to	0.95	are	filtered	out	before	proceeding	into	
further	steps.

The classifier’s generalization error:	The	genes	are	taken	in	order	
from	 the	 genes	 ranking	 of	 each	 class	 until	 any	 of	 the	 classes	
reaches	gets	to	the	maximum	number	of	genes	or	until	zero	error	
is	reached.	The	error	for	each	of	the	classifiers	and	the	number	of	
genes	used	to	construct	them	are	saved.

Construction of the classier:	Selection	of	a	subset	of	genes	to	train	
the	 classier	 through	8-fold	 cross-validation.	The	 selected	genes	
are	used	to	train	the	classier	with	the	complete	set	of	samples.	
The	fastest	execution	would	be	training	the	classier	exploring	a	
reduced	number	of	genes	(maximum	Genes	Training	cycle	is	100).	

Construction of the gene networks:	 A	 gene	 network	 is	 built	
for	 each	 one	 of	 the	 classes	 using	 the	 pairwise	 gene-to-gene	
correlations	 and	 interactions.	 The	 gene	 networks	 are	 built	
calculating	the	relations	derived	from	gene	to	gene	co-expression	
analysis	 (by	 default,	 Pearson	 correlation)	 and	 the	 interactions	
derived	 from	 gene	 mutual	 information	 analysis	 (using	 minet	
package)	[22].	 In	order	to	 identify	the	 importance	of	the	genes	
within	the	network,	we	calculate	the	degrees	of	nodes	(genes)	in	
the	network	[18].

Validation with in-vitro cell models 
Adult human dermal fibroblasts (aHDFs):	Adult	human	dermal	
fibroblasts	 (aHDFs)	 were	 purchased	 from	 Lonza	 Group,	 Ltd.	
(Walkersville,	 MD,	 USA)	 and	 maintained	 in	 fibroblast	 basal	
medium-2	 (FBM-2)	 supplemented	 with	 growth	 kit	 (10	 ml	 of	
fetal	 bovine	 serum,	 0.5	 ml	 of	 insulin,	 0.5	 ml	 of	 gentamicin	
sulfate	 amphotericin-B	 (GA-1000)	 and	 0.5	 ml	 of	 r-human	
fibroblast	growth	factor-B,	Lonza).	Cells	were	incubated	at	37℃ 
in	 a	 5%	 CO2	 atmosphere.	 To	 build	 the	 RN7SK	 and	 CACNA1G-
AS1	 overexpression	 aHDFs	 cell	 models,	 the	 full-length	 RN7SK 
and	 CACNA1G-AS1	 cDNA	 were	 transfected	 into	 aHDFs	 cells	 to	
generate	aHDFs/RN7SK	and	aHDFs/CACNA1G-AS1,	respectively.

Cell migration assay (wound-healing assay):	 A	 wound	 closure	
seeding	 model	 was	 constructed	 using	 silicon	 culture	 inserts	
(Ibidi,	LLC,	Munchen,	Germany)	with	two	individual	wells	for	cell	
seeding.	Each	insert	was	placed	in	a	culture	dish,	and	8	×	103	cells	
of	aHDF	were	plated	in	each	well	and	grown	to	form	a	confluent	
and	 homogeneous	 layer.	 Twenty-four	 hours	 after	 cell	 seeding,	
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the	culture	insert	was	removed	and	a	cell-free	area,	the	“wound”	
made	by	the	culture	insert,	could	be	observed.	The	wound	was	
approximately	500	nm	wide.	The	cells	were	treated	with	10	g/ml	
of	mitomycin	C	in	serum-free	media	without	growth	factors	for	
2	h	to	suppress	proliferation.	Healing	of	the	wound	by	migrating	
cells	after	lncRNA	cDNA	transfection	was	observed	over	time	by	
light	 microscopy	 (IX-70,	 Olympus)	 and	 analyzed	 using	 Image	 J	
software.

Results
Genes ranking
As	a	result	of	this	process,	even	if	a	gene	is	found	associated	with	
several	classes	during	the	expression	analysis,	each	gene	can	only	
be	on	the	ranking	of	one	class.	When	the	analysis	performed	for	
two	classes,	 the	one	vs	 rest	approach	only	provides	one	 list	of	
genes.	This	list	of	genes,	the	genes	that	differentiate	the	classes,	
is	labeled	both	classes.	The	sign	of	the	expression	value	reflects	in	
which	class	it	is	up	or	down.	The	genes	ranking	obtained	for	each	
class	is	used	for	the	gene	selection	in	the	classification	procedure	
and	it	is	provided	as	Figure 1.

Significant genes
The	set	of	genes	considered	significant	for	each	of	the	classes	is	
determined	by	a	common	threshold	for	the	posterior	probability.	
This	 common	 threshold	 provides	 a	way	 to	 quantify	 the	 size	 of	
the	gene	signature	assigned	to	each	group	(as	always:	compared	
to	 the	 other	 diseases	 in	 the	 study).	 In	 this	way,	 the	 algorithm	
provides	 a	 framework	 to	 compare	 biological	 states,	 i.e.	 the	
biological	or	pathological	conditions	represented	in	the	samples.	
The	results	 (Figure 2)	showed	the	differences	 in	the	size	of	 the	
gene	sets	assigned	to	a	disease:	at	lpThreshold	0.95	burn	wound	
has	been	assigned	6	genes,	while	scar	only	2	genes.

This	observation	showed	the	biological	interpretation	that	small	
gene	signatures	might	be	an	indication	of	relatively	less	systemic	
changes.	 The	 results	 may	 help	 us	 to	 unravel	 that	 differences	
based	 on	 the	 gene	 signatures.	 It	 indicated	 that	 differences	 in	
lncRNA	gene	expression	in	the	scar	is	relatively	small,	compared	
to	the	burn	wound	in	this	study.	

Gene selection procedure
The	optimum	number	of	genes	for	training	the	classier	is	selected	
by	evaluating	 the	 classifiers	 trained	with	an	 increasing	number	

Figure 1 (A)	Scheme	representing	the	overlap	between	the	sets	of	genes	 that	each	disease	may	affect.	All	 the	genes	 that	affect	each	
disease	(ovals)	and	selects	as	significant,	the	genes	that	are	unique	(differentially	expressed)	to	each	group	(B).
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of	 genes.	 This	 is	 done	 using	 several	 iterations	 of	 8-fold	 cross-
validation.	 Each	 cross-validation	 iteration	 starts	 with	 the	 first	
ranked	gene	of	each	class:	it	trains	an	internal	classier	with	these	
genes	and	evaluates	its	performance.

The	final	selection	is	done	based	on	the	genes	selected	in	each	of	
the	iterations.	For	each	class,	the	top-ranked	genes	are	selected	
by	 taking	 the	 highest	 number	 of	 genes	 selected	 in	 the	 cross-
validation	 iterations.	 This	 allows	 identifying	 a	 stable	 number	

of	 genes	while	 accounting	 for	 the	 differences	 in	 sampling.	 The	
results	were	shown	in	Figure 3.

Classification model built
We	 finally	 built	 the	 classier	 associated	 to	 each	 class,	 and	 the	
genes	ranking	and	further	information	about	the	selected	genes.	
This	classier	was	built	based	on	total	17	of	support	vectors	with	
parameters	 as	 follows:	 SVM-Type:	 C-classification;	 SVM-Kernel:	
linear;	 cost:	 1;	 gamma:	 0.083.	 In	 the	 dataset,	 the	 genes	 were	
labeled	with	the	gene	symbols	provided	by	a	gene-based	probe	
mapping	file.	The	best	lncRNA	with	best	discriminant	power	was	
shown	in	Figure 4.

Gene networks
Gene	networks	provide	the	available	information	about	the	genes,	
which	was	shown	in	Figure 5.	The	gene	name	is	the	node	label.	
The	gene	expression	 is	shown	with	the	node	color,	meanwhile,	
the	discriminant	power	determines	its	size.

Experimental validation of hub genes by analysis 
of the gene effect of the migration rate of skin 
cells
In	 the	 cell	 viability	 assay,	 Figure 6	 shows	 the	 effects	 of	
overexpression	of	RN7SK and	CACNA1G-AS1	about	the	migration	
of	normal	human	 skin	 cells.	 Compared	with	 the	 control	 group,	
overexpression	of	aHDFs/RN7SK	and	aHDFs/CACNA1G-AS1	cells	
migrated	faster,	and	the	most	effective	concentration	was	varied	
along	 with	 cell	 type.	 In	 fibroblasts,	 overexpression	 of	 RN7SK	
and	 CACNA1G-AS1	 increased	 migration	 rate	 most	 effectively	
and	 improved	 wound	 healing	 by	 approximately	 20%	 and	 10%	
compared	with	the	control	group.

Figure 2 Plot	 of	 the	 posterior	 probabilities	 of	 the	 genes	 of	 burn	
wound	 class,	 scar	 class,	 and	 pre-injury	 healthy	 skin,	
ordering	the	genes	according	to	their	rank	and	setting	the	
lpThreshold	at	0.95.

Figure 3 (A):	the	number	of	genes	selected	in	each	iteration.	The	algorithm	runs	until	exploring	a	maximum	number	of	genes	in	any	class	
(maxGeneTrain=100)	or	until	zero	error	is	reached	(continueZeroError=FALSE).	In	each	iteration,	the	minimum	number	of	genes	
with	minimum	error	is	selected.	(B):	Plot	of	the	gene-selection	iterations.	Each	line	represents	an	iteration	and	the	error	rates	
observed	for	each	number	of	genes	(starting	at	5,	one	per	class).
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Figure 4 Plot	of	the	discriminant	power	of	gene	RN7SK	(A)	presents	the	highest	discriminant	power	in	burn	wound	while	CACNA1G-AS1	(B)	
in	scar.	Plot	of	the	expression	profiles	for	gene	RN7SK	(C)	and	CACNA1G-AS1	(D).	A	high	discriminant	power	can	help	to	identify	
gene	markers.

Figure 5 Gene	network	obtained	for	class	burn	wound	and	scar	selecting	the	top	100	genes	from	the	gene	ranking,	presenting	all	nodes.	
The	network	legend	indicates	the	meaning	of	the	shapes	and	colors	given	to	the	nodes	and	edges.
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Discussion
In	 this	 study,	we	used	 a	 dataset	 including	 pre-injury,	 early	 and	
serial	samples	of	untreated	human	burn	wounds.	We	aimed	to	
mine	the	hub	lncRNA	in	burn	or	scar	from	aesthetic	scarification	
individuals.	The	creation	of	an	aesthetic	scar,	which	adopted	as	
a	form	of	body	modification,	may	be	done	by	applying	a	heated	
object	to	the	skin,	frostbite,	electrocautery	or	full-thickness	skin	
excision	 [8,25].	 Aesthetic	 Scarification	 has	 a	 history	 in	 many	
cultures	 and	 in	 some	 cases	may	 even	 be	 used	 as	 a	 traditional	
medical	treatment	without	supporting	evidence	[7,26].	This	kind	
of	scars	is	different	from	patients	with	severe	burning	scars	which	
have	a	risk	of	developing	sepsis	or	other	complications.

Although	RNA	expression	is	thought	to	be	significant	in	regulating	
dermal	 collagen	 production	 in	 scars,	 less	 has	 been	 described	

regarding	the	function	of	 lncRNA	both	 in	scars	and	aHDFs	[27].	
Therefore,	 we	 selected	 the	 lncRNA	 genes	 for	 our	 candidates.	
Because	 the	 geNetClassier	 algorithm	 relies	 on	 a	 pre-specified	
number	 of	 clusters	 of	 genes	 [18],	 genes	were	 enriched	 by	 the	
SVM	classification	based	on	 the	 expression	of	 lncRNAs	 [20].	 In	
addition,	 two	new	significant	genes	are	described	here.	 First	 is	
the	rapid	transient	response	of	the	gene	RN7SK	in	burn	wound.	
Considering	 the	 important	 role	 that	 inflammation	 and	 the	
Positive	 Transcriptional	 Elongation	 Factor	 b	 (P-TEFb)	 [28]	 or	
signaling	proteins	are	thought	to	have	in	scar	development,	this	
finding	 implies	 that	 there	may	 be	 an	 opportunity	 to	 intervene	
early	 after	 an	 injury	 to	 investigate	 potential	 scar	 modification	
treatments	rather	than	later	after	the	scar	has	been	established.	
Second	is	the	sustained	regulation	of	lncRNA	including	CACNA1G-
AS1.	 Using	 the	 algorithm	 of	 geNetClassier,	 some	 consistencies	
were	 observed.	 Bioinformatics	 analysis	 suggested	 that	 lncRNA	
CACNA1G-AS1	 may	 be	 crucial	 to	 keloid	 formation	 [27].	 This	
observation	 consists	 of	 the	 fact	 that	 differentially	 expressed	
lncRNAs,	 such	 as	 CACNA1G-AS1,	 may	 play	 a	 key	 role	 in	 keloid	
formation	in	aHDFs.	

There	are	clear	limitations	in	this	study.	First,	the	sample	is	small.	
Given	the	sample	size,	it	is	impossible	to	know	what	if	any	effect	
each	of	 these	 factors	may	have	 the	 result.	However,	 given	 the	
exploratory	nature	of	this	study	as	well	as	the	available	resources	
with	poorly	described	population,	expanding	the	study	was	not	
possible.	 Secondly,	using	a	 small	 volume	biopsy,	 cell	 and	bead-
array	technology	did	not	allow	for	additional	histologic	descriptors	
of	the	wound	and	resultant	scar.	However,	this	methodology	has	
been	previously	reported	in	skin	and	scar	investigations	[11,29].

Conclusion
Overall,	the	response	to	injury	is	consistent	between	subjects	and	
cell	models.	This	cohort	provides	a	unique	 insight	 into	 the	skin	
transcriptional	changes	that	occur	after	burn	injury.	Other	studies	
have	 described	 transcription	 differences	 of	 lncRNA	RN7SK and	
CACNA1G-AS1	between	normal	skin	and	scar	or	validated	in	cell	
models.	However,	 there	was	considerable	variation	 in	sampling	
time	that	needs	to	be	further	investigated.

Figure 6 Plot	of	three	groups	of	cell	migration	rate.	aHDFs/RN7SK	and	
aHDFs/CACNA1G-AS1	 are	 both	 experimental	groups,	 the	
aHDF	represents	control	group.	Y-axis	is	cell	migration	rate.

2Vol. 5 No. 1:

file:///D:/Other%20Format/iMedPub/IPCMM/IPCMM%20vol%205/IPCMM%20vol%205.1/IPCMM-Vol5.1_AI/javascript:void(0);
file:///D:/Other%20Format/iMedPub/IPCMM/IPCMM%20vol%205/IPCMM%20vol%205.1/IPCMM-Vol5.1_AI/javascript:void(0);


7© Under License of Creative Commons Attribution 3.0 License         

2019
Cellular & Molecular Medicine: Open access

References
1 Esselman	PC	(2007)	Burn	rehabilitation:	an	overview.	Arch	Phys	Med	

Rehabil 88:	S3-S6.

2	 Barber	RC,	Chang	LY,	Arnoldo	BD,	Purdue	GF,	Hunt	JL,	et	al.	(2006)	
Innate	immunity	SNPs	are	associated	with	risk	for	severe	sepsis	after	
burn	injury.	Clin	Med	Res	4:	250-255.

3	 Venet	 F,	 Tissot	 S,	 Debard	 AL,	 Faudot	 C,	 Crampe	 C,	 et	 al.	 (2007)	
Decreased	monocyte	human	leukocyte	antigen-	DR	expression	after	
severe	burn	 injury:	 correlation	with	 severity	 and	 secondary	 septic	
shock.	Crit	Care	Med	35:	1910-1917.

4	 Zhu	KQ,	Carrougher	GJ,	Gibran	NS,	Isik	FF,	Engrav	L	(2007)	Review	of	
the	 female	Duroc/Yorkshire	pig	model	 of	 human	fibroproliferative	
scarring.	Wound	Repair	Regen	1:	S32-S39.

5	 Hashimoto	K,	Kajitani	N,	Miyamoto	Y,	Matsumoto	KI	(2018)	Wound	
healing-related	properties	detected	in	an	experimental	model	with	
a	 collagen	 gel	 contraction	 assay	 are	 affected	 in	 the	 absence	 of	
tenascin-X.	Exp	Cell	Res	363:	102-113.

6	 Castro	 Souza	 Junior	Neto	 J,	 Estevao	 LR,	Baratella-Evencio	 L,	Vieira	
MG,	Simoes	RS,	et	al.	(2017)	Mast	cell	concentration	and	skin	wound	
contraction	in	rats	treated	with	Ximenia	americana	L.	Acta	Cirurgica	
Brasileira	32:	148-156.

7	 Engrav	 LH,	 Garner	WL,	 Tredget	 EE	 (2007)	 Hypertrophic	 scar,	 wound	
contraction	and	hyper-hypopigmentation.	J	Burn	Care	Res	28:	593-597.

8	 Seif	F,	Momeni	M,	Hobbenaghi	R,	Seif	F,	Mahboubi	O,	et	al.	(2018)	
Analysis	of	the	effect	of	subcutaneous	injection	of	omental-derived	
cells	on	the	healing	of	third	degree	burns	in	rats:	a	preliminary	study.	
Ann	Burns	Fire	Disasters	31:	59-64.

9	 Chen	 C,	 Feng	 Y,	 Wang	 X	 (2018)	 LncRNA	 ZEB1-AS1	 expression	 in	
cancer	prognosis:	review	and	meta-analysis.	Clin	Chimica	Acta	484:	
265-271.

10	 Quan	J,	Pan	X,	Zhao	L,	Li	Z,	Dai	K,	et	al.	(2018)	LncRNA	as	a	diagnostic	
and	prognostic	biomarker	in	bladder	cancer:	a	systematic	review	and	
meta-analysis.	Onco	Targets	Ther	11:	6415-6424.

11 Xiao	B,	Huang	Z,	Zhou	R,	Zhang	J,	Yu	B	(2018)	The	prognostic	value	
of	 expression	 of	 the	 long	 noncoding	 rna	 (lncrna)	 small	 nucleolar	
rna	host	gene	1	(snhg1)	in	patients	with	solid	malignant	tumors:	a	
systematic	review	and	meta-analysis.	Med	Sci	Monit	24:	5462-5472.

12	 Nong	Q,	Li	S,	Wu	Y,	Liu	D	 (2018)	LncRNA	COL1A2-AS1	 inhibits	 the	
scar	fibroblasts	proliferation	via	regulating	miR-21/Smad7	pathway.	
Biochem	Biophys	Res	Commun	495:	319-324.

13	 Gabory	A,	 Jammes	H,	Dandolo	 L	 (2010)	The	H19	 locus:	 role	of	an	
imprinted	non-coding	RNA	 in	 growth	and	development.	BioEssays	
Prospects	Overv	32:	473-480.

14	 Nobili	L,	Lionetti	M,	Neri	A	(2016)	Long	non-coding	RNAs	in	normal	
and	malignant	hematopoiesis.	Oncotarget	7:	50666-50681.

15	 Wei	P,	Han	B,	Chen	Y	(2013)	Role	of	long	non-coding	RNAs	in	normal	
and	malignant	hematopoiesis.	Sci	China	Life	Sci	56:	867-875.

16	 Jia	Q,	Chen	X,	Jiang	W,	Wang	W,	Guo	B,	et	al.	(2016)	The	regulatory	
effects	of	 long	noncoding	RNA-ancr	on	dental	tissue-derived	 stem	
cells.	Stem	Cells	Int	2016:	3146805.

17	 Haferlach	T,	Kohlmann	A,	Wieczorek	 L,	Basso	G,	Kronnie	GT,	et	 al.	
(2010)	Clinical	utility	of	microarray-based	gene	expression	profiling	
in	the	diagnosis	and	subclassification	of	 leukemia:	report	 from	the	
International	Microarray	Innovations	in	Leukemia	Study	Group.	J	Clin	
Oncol	28:	2529-2537.

18	 Aibar	S,	Fontanillo	C,	Droste	C,	Roson-Burgo	B,	Campos-Laborie	FJ,	
et	al.	(2015)	Analyse	multiple	disease	subtypes	and	build	associated	
gene	 networks	 using	 genome-wide	 expression	 profiles.	 BMC	
Genomics	16:	S3.

19	 Sokolov	AA,	 Zeidman	P,	 Erb	M,	Ryvlin	P,	Pavlova	MA,	et	 al.	 (2019)	
Linking	 structural	 and	 effective	 brain	 connectivity:	 structurally	
informed	 Parametric	 Empirical	 Bayes	 (si-PEB).	 Brain	 Struct	 Funct	
224:	205-217.

20	 Nishino	J,	Kochi	Y,	Shigemizu	D,	Kato	M,	Ikari	K,	et	al.	(2018)	Empirical	
bayes	estimation	of	semi-parametric	hierarchical	mixture	models	for	
unbiased	characterization	of	polygenic	disease	architectures.	Front	
Genet	9:	115.

21	 Jiang	B,	Cui	 L,	 Zi	Y,	 Jia	Y,	He	C	 (2018)	Skin	 surface	 lipid	differences	
in	sensitive	skin	caused	by	psychological	stress	and	distinguished	by	
support	vector	machine.	J	Cosmet	Dermatol	18:	1121-1127.

22	 Meyer	 PE,	 Lafitte	 F,	 Bontempi	 G	 (2008)	 Minet:	 A	 R/Bioconductor	
package	 for	 inferring	 large	 transcriptional	 networks	 using	 mutual	
information.	BMC	Bioinformatics	9:	461.

23	 Win	KT,	Phung	H,	Young	L,	Tran	M,	Alcock	C,	et	al.	(2004)	Electronic	
health	record	system	risk	assessment:	a	case	study	from	the	minet.	
Health	Inf	Manag	J	33:	43-48.

24	 Kendziorski	CM,	Newton	MA,	Lan	H,	Gould	MN	(2003)	On	parametric	
empirical	 Bayes	 methods	 for	 comparing	 multiple	 groups	 using	
replicated	gene	expression	profiles.	Stat	Med	22:	3899-3914.

25	 Kim	MS,	 Lee	MH,	Kwon	BJ,	Koo	MA,	Seon	GM,	et	 al.	 (2015)	Golgi	
polarization	 plays	 a	 role	 in	 the	 directional	 migration	 of	 neonatal	
dermal	 fibroblasts	 induced	 by	 the	 direct	 current	 electric	 fields.	
Biochem	Biophys	Res	Commun	460:	255-260.

26	 Lee	JH,	Kim	HL,	Lee	MH,	You	KE,	Kwon	BJ,	et	al.	(2012)	Asiaticoside	
enhances	normal	human	skin	cell	migration,	attachment	and	growth	
in	vitro	wound	healing	model.	Phytomedicine 19:	1223-1227.

27	 Connell	KM,	Phillips	M,	Coates	R,	Doherty-Poirier	M,	Wood	FM	(2014)	
Sexuality,	body	image	and	relationships	following	burns:	analysis	of	
BSHS-B	outcome	measures.	Burns 40:	1329-1337.

28	 Gabriel	 VA,	 McClellan	 EA,	 Scheuermann	 RH	 (2014)	 Response	 of	
human	skin	to	esthetic	scarification.	Burns	40:	1338-1344.

29	 Karamanoukian	R,	Ukatu	C,	Lee	E,	Hyman	J,	Sundine	M,	et	al.	(2006)	
Aesthetic	 skin	 branding:	 a	 novel	 form	 of	 body	 art	 with	 adverse	
clinical	sequela.	J	Burn	Care	Res	27:	108-110.

2Vol. 5 No. 1:


