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Short Communication

Drug development of promising hits from phenotypic
screens is often hampered due to a lack of information on the
cellular target or the mode of action of the compound. An
efficient method for target identification is chemogenomic
profiling in the surrogate model Saccharomyces cerevisiae.
Here we briefly review the progress of this technology, give
some successful target identification examples and present
future directions for haploinsufficiency and homozygous
profiling in higher eukaryotes based on the CRISPR-Cas9
system.

Knowledge of the target protein of a compound is not a
priori essential for drug development. However, understanding
the mode of action facilitates the informed improvement of a
lead structure towards increased potency, higher selectivity,
and fewer off-target effects. Target identification by affinity-
based methods can fulfil this task but requires a significant
chemistry effort. This derivatization is required to define the
structure-activity relationship of the hit compound, enabling
the binding of the compound to a matrix without interfering
with compound-target interactions. Furthermore, affinity
proteomics is biased against membrane or low abundance
proteins. Haploinsufficiency profiling (HIP) and homozygous
profiling (HOP) in the model organism S. cerevisiae represent a
powerful alternative genetic approach (Figure 1a). It does not
require chemical modification of the lead compound and in
principle the assay covers all nuclear encoded proteins. HIP
exploits the increased sensitivity towards a compound after
lowering the dosage of the target-encoding gene from two
copies to one copy in diploid yeast [1,2].

The complementary approach to HIP is the homozygous
deletion profiling (HOP) where both copies of non-essential
genes are deleted. In general, in HOP direct target genes
cannot be identified by hypersensitivity but information about
functionally related or connected genes that buffer the drug-
target pathway can be gathered (in exceptional cases however
if the compound exerts a dominant negative effect on a non-

essential gene product it can score as resistant). The feasibility
of this approach for identifying molecular targets was
demonstrated in pioneering experiments where individual
heterozygous strains were grown in the presence of sublethal
concentrations of compounds that directly target the gene
product of the heterozygous locus [3].

Based on this general protocol we implemented an
optimized HIP HOP platform using a fully automated robotic
system, testing each substance in duplicate and analyzing
negative and positive controls in each assay. Moreover, using
the controls for intra-experimental normalization and
calculation of additional statistical parameters, we improved
the signal-to-noise of the profiles [4]. Applying this screening
protocol led to the successful identification of the cellular
targets of a number of different compound classes. The
feasibility of the approach for target identification of
antifungal compounds is demonstrated by the identification of
geranylgeranyltransferase | (GGTase 1) [5], acetolactate
synthase [6] and Ergllp [7].

For these examples, chemogenomic profiling enabled
specific follow up studies that highlighted drawbacks of the
lead compounds, pinpointing the importance of target
knowledge for further drug development. In the case of
GGTase | inhibitors it became clear that although the
prenylation pathway is conserved among different fungal
species it is nonessential in pathogenic species thus
challenging the therapeutic value of these scaffolds [5].

Acetolactate synthase was identified as a molecular target
of compounds with broad-spectrum antifungal activities.
However it became clear that targeting the first step in
branched-chain amino acid biosynthesis might be
compromised due to the possibility of nutrient bypass in vivo
[6]. Identification of Ergllp as antifungal target revealed that
the compounds were also active against human cytochrome
P450s suggesting that substantial medicinal-chemistry efforts
might be required to exploit clinical and commercial potential
of the compounds [7].
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Figure 1: Principle of chemogenomic profiling technologies. Chemogenomic profiling: assessing the relative sensitivity or
resistance of different mutant cells in a pool (as measured by over- or under-representation of individual mutants) against
sublethal doses of an inhibitor can support identification of affected targets, pathways and resistance factors. a) Genome-wide
homozygous and heterozygous deletion collections have been designed for different fungal species taking advantage of
efficient homologous recombination in yeasts. When the deletions were generated mutant-specific DNA bar-code sequences
were integrated allowing quantification of mutants in complex pools. b) Genome-wide CRISPR-Cas9 gene-editing libraries
enable similar experiments in mammalian cells. Double strand breaks induced by the CRISPR-Cas9 system are repaired by
error prone non-homologous end joining (NHEJ) resulting in mutations that frequently lead to homo- or heterozygous loss of
function and hence resemble a combined HIP-HOP mutant pool of the fungal systems. For quantification of individual mutants

b) CRISPR-Cas$ system - B -

gRNA
Gene A

genome-wide deletion collection by CRISPR/Cas9-induced
NHEJ, gRNA is used as DNAbarcode

mutant collection
caused by indels

grow mutant pools

in absence and
presence of sublethal
doses of inhibitor

e S
o
o

determine enrichment/depletion of mutants by
assessing gRNA abundance

J

HIP HOP profiling has shown to be useful beyond the
discovery of antifungals. Due to evolutionary conservation of
many genes and processes HIP HOP can provide target
hypotheses for compounds active in other species. For
example it supported cytochrome b as the target for GNF7686,
an inhibitor of Trypanosoma cruzi [8]. Although cytochrome b
is not included in the yeast HIP pool as it is encoded by the
mitochondrial genome, the profile indicated that GNF7686
directly interferes with the function of the S. cerevisiae
respiratory chain at the level of complex Ill. For cladosporin, a
potent natural product inhibitor of Plasmodium falciparum
blood- and liver-stage proliferation, chemogenomic profiling
highlighted lysyl-tRNA synthetase as cellular target and
facilitated target validation in P. falciparum [9]. As highlighted
by cladosporin, HIP HOP has proven to be especially efficient

when profiling natural products for a number of reasons: first,
because natural products are often targeting evolutionary
conserved proteins. Second, because HIP HOP is a linker-free
technology, and many natural products are not easily
amenable to chemical modification, it is ideally suited to
studying their mechanism of action.

The cyclic depsipeptide decatransin was found to inhibit
growth of HCT116 cells and chemogenomic profiling
highlighted the Sec61-Sec63 core complex, machinery for
protein translocation and membrane insertion at the ER, as
the site of intervention [10]. Rocaglamides are plant-derived
natural products with reported insecticidal, antifungal and
anticancer  activities.  Haploinsufficiency  profiling  of
rocaglamide  identified numerous  sensitive  strains
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heterozygous for different components of the translation
initiation pathway, suggesting the possible target process, but
making target de-convolution difficult. Further
experimentation demonstrated that rocaglamides exert a
dominant negative effect on translation initiation and the
molecular target had been identified as a resistant hit in the
profile [11]. Nannocystin A, a cyclic lactone inhibitor isolated
from myxobacteria, showed differential activity across various
cancer cell lines. Using the HIP HOP platform, a-(TEF2) and B-
subunit (EFB1) of the translation elongation factor 1 (EF-1)
complex were identified as putative targets [12].

In the case of the natural product novolactone HIP
suggested cytosolic and ER-localized isoforms of Hsp70 as the
cellular targets, as the yeast ScHsp70, an Hsp70 NEF (SSE1), a
ScHsp90 co-chaperone (CNS1) and stress induced heat shock
factor (HSF1) were found to be inhibited. In addition the
profile was distinct from that of known Hsp90 inhibitors [13].
FR171456 has cholesterol-lowering properties in animal
models as well as broad antifungal activity, and HIP revealed
the sterol pathway enzyme Erg26p (sterol-4-alpha-
carboxylate-3-dehydrogenase) as the likely molecular target.
This finding supported results from a metabolite-profiling
assay where NSDHL (NAD(P) dependent steroid
dehydrogenase-like) the human homologue was identified
[14].

In the presented examples the compound target identified
in yeast was also the conserved compound target in human
cells. Indeed, bioinformatics analysis supported that 31% of
the proteins encoded by yeast genes have human homologues
and that approximately 50% of the human genes implicated in
heritable diseases are also found in yeast [15,16]. Thus there is
a good chance that targets identified by chemogenomic
profiling in yeast can be extrapolated to higher organisms. This
makes S. cerevisiae a relevant model organism to study
mammalian diseases and pathways.

With the invention of the CRISPR-Cas9 system a new era for
genome-wide chemical profiling has started (Figure 1b). A first
guantitative CRISPR-Cas9 interference screen in vyeast
performed by Smith and coworkers enabled library design and
profiling in S. cerevisiae (although not yet with genome-wide
coverage). Their CRISPR-Cas9 interference screen identified
chemical-genetic interactions of 18 small molecules and also
revealed a new mechanism for the suppression of fluconazole
toxicity [17].

A first genome-wide CRISPR-Cas9 based approach was also
executed in mammalian cells to identify the cellular target and
mechanism of action of the potent broad-spectrum antiviral
compound GSK983. By using shRNA and CRISPR-Cas9 screen in
parallel, dihydroorotate dehydrogenase (DHODH), an enzyme
responsible for de novo pyrimidine biosynthesis was found to
be inhibited by GSK983. This blockage of pyrimidine
metabolism explained the antiviral potency on the one hand
and observed cytotoxicity in fast dividing cells on the other
hand [18].

However Deans and coworkers state that genes required for
essential processes can only be identified by shRNA-mediated
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knockdown and not in CRISPR-Cas9 deletion screens (as
complete editing would lead to depletion of the cell from the
pool). This suggests that CRISPR-Cas9 screens have the
potential to take the yeast HOP assay into mammalian
systems. The mechanisms for CRISPR interference (CRISPRi)
are still being investigated and optimized but it is clear that
this has the potential to also bring HIP into mammalian cells
and thus allow chemogenomic profiling for mammalian targets
that are not conserved in fungi [19].

The ever growing body of literature around CRISPR-Cas9
demonstrates its applicability beyond mammalian cells in
biological systems such as plasmodia or plants [20,21]. Thus it
will be interesting to see how the profound expertise gained in
chemogenomic profiling in yeast will help to build and improve
genome-wide CRISPR-Cas9 based technologies in other
species. In combination with the current upswing of
phenotypic screens [22], chemogenomic profiling enabled by
CRISPR-Cas9 could boost and accelerate the urgently needed
discovery of effective novel anti-infectives, pesticides and
human medicines.
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